This is a collection of technical information regarding SpreadIB.jar

Data flow between interacting modules

| tﬁgtimﬂ.u.eﬂ&
orport 91591 **

Sz= footoles
=
3
Configure | | Save price data Broadcast price data
seftingsxml (mmnched) (mmched)
SpreadlB
Reguest Market Data Receive Market Data
according settings.xml asynchmonoushy
=
2 Z

| B 'TWS (Trader Work Station)

I

Market data farms
at Interactive Brokers

ntemet
ENTET]

* 8595 iz dedicated to WaweS5 and only transmits traded prices
** 5191 iz a genercicp stream that also prolongs ask and bid prices.

Generic file formats:

 ASCII CSV files - bar by bar (<contract>.csv)

201112087 11:508:88 1262.5 1262.5 1262 .25 1262.5 368
201112087 11:51:88 1262.5 1262.5 1261 .75 1262 .25 673
201111287 11:52:80 1262.8 1262.5 1261 .75 1262.5 513
Record delimiter: new line
Field delimiter: space
Fields: <date> <time> <open> <high> <low> <close> <volume>
date is given in YYYY.MM.DD
time is given in HH:MM:SS

 ASCII CSV files - tick by tick (<contract>.ticks)

2011.89 16 13:83:14 1281.25 8
2011.89 16 13:83:15 1281.8 35
Record delimiter: new line
Field delimiter: space
Fields: <date> <time> <price> <volume>
date is given in YYYY.MM.DD
time is given in HH:MM:SS

TCP stream formats:

Port 9595

Record delimiter: "'

Heartbeat every 5 seconds: '*'

Fields: <contract>:pv:<date>:<time>:<price>|<volume>

date format is YYYYMMDD, time format is HM without preceding zeroes

Port 9191

Record delimiter: new line

Field delimiter: ';'

Heartbeat every 5 seconds: '*'

Fields: <contract>;<id>;<type>;<price>;<timestamp>

id is request id internally used by TWS

type is 'bid', 'ask’, 'last’, 'high', 'low’, 'close', 'open’, 'lowl3weeks', 'highl3weeks',
'low26weeks', 'high26weeks', 'low52weeks', 'high52weeks', 'MarkPrice'

timestamp is given in milliseconds counted from 1. Jan. 1970 00:00:00.000

Wave59 directory and fileformat:

Ordner v | Mame
a Wawedd RT « || 20100104.h59
4 data %) 20100105.h59
4 IB & 20100106.h59
CC_FUT_20100515_MWYBOT_USD [T 20100107 .h59
COIL_FUT_20100226_IPE_USD [T 20100111.h59

There's one dedicated directory for each single contract, named by its contract name.

Files:

<date>.h59
collected bar data for that day, minute by minute
date is given in YYYYMMDD

516 1.34165 1.34165 1.34165 1.34165 0
517 1.34165 1.34165 1.3416 1.3416 7

fields: <time> <open> <high> <low> <close> <volume>

<date>.txt
collected ticks for the current day
date is given in YYYYMMDD

516 1.34165
516 1.34165
fields: <time> <price>

<date>v.txt
collected volume ticks for the current day
date is given in YYYYMMDD

516 456
fields: <time> <volume>

regHistoricalData() is implemented this way:

Connect to TWS

< Thread ESecketClient)

Thread Ewrapper
historicalData()

Query contract data

ldentify request by regld
(matches the fickerd recently sef)

designate buffers for this contract

until finished” message arrived

Query date

Start new thread
that saves the second dayofdata
contained in the buffers into a file.

reglD = tickerdD
designates contract

date, open, high,
low, close, volume

for first history request

Query date
for last history request

Loop over each day

set

tickerId (an unigue counter fo identify the equest
within Ewrapper historicallata())

contract (a[eference to the contract data

Format yyyymmdd hh-mm:-ss)
durationStr (constant 20"
| use 20 fo overcome different time Zones)
! (constant .1 min™)
shatToShow (constant ,TRADES™)
useRTH (constant value 0}
fommacDate (constant value 1)

Place regHistoricalData()

wait 11 seconds

Linking to TWS using the TWS Java API

Recommended reading:

http://www.interactivebrokers.com/download/JavaAPIGettingStarted.pdf

The most important things to remember here are that the SpreadIBFrame.java class

implements the EWrapper interface, which is the part of IB's TWS Java API that defines the methods that
receive messages from TWS, and calls the methods in EClientSocket, which are used to send messages to
TWS.

If you have the skill and confidence to handle Java on your own, you can build your own Java application
to link to TWS, using the following steps as a guide.

1 Import com.ib.client.* into your source code file. This is the package that contains the

TWS Java API classes and methods.

2 Implement the EWrapper interface. This class will receive messages from the socket.

3 Override the following methods:

http://www.interactivebrokers.com/download/JavaAPIGettingStarted.pdf

EWrapper Method Description

tickPrice() Handles market data.

tickSize()
tickOptionComputation()

tickGeneric()
tickString()
tickEFP()

historicalData() Receives historical data results. “

4 Instantiate the EClientSocket class. This object will be used to send messages to TWS.
5 Call the following EClientSocket methods:

EClientSocket Method

eConnect()
eDisconnect() Disconnects from TWS.

Description
Connects to TWS.

reqMktData() Requests market data.
cancelMktData() Cancels market data.

reqHistoricalData() Requests historical data. I
cancelHistoricalData() Cancels historical data. I

