
This is a collection of technical information regarding SpreadIB.jar 

Generic file formats:

• ASCII CSV files – bar by bar (<contract>.csv)

Record delimiter: new line
Field delimiter: space
Fields: <date> <time> <open> <high> <low> <close> <volume>
date is given in YYYY.MM.DD
time is given in HH:MM:SS

• ASCII CSV files – tick by tick (<contract>.ticks)

Record delimiter: new line
Field delimiter: space
Fields: <date> <time> <price> <volume>
date is given in YYYY.MM.DD
time is given in HH:MM:SS



TCP stream formats:

• Port 9595

Record delimiter: '!'
Heartbeat every 5 seconds: '*'
Fields: <contract>:pv:<date>:<time>:<price>|<volume>
date format is YYYYMMDD, time format is HM without preceding zeroes

• Port 9191

Record delimiter: new line
Field delimiter: ';'
Heartbeat every 5 seconds: '*'
Fields: <contract>;<id>;<type>;<price>;<timestamp>
id is request id internally used by TWS
type is 'bid', 'ask', 'last', 'high', 'low', 'close', 'open', 'low13weeks', 'high13weeks',

'low26weeks', 'high26weeks', 'low52weeks', 'high52weeks', 'MarkPrice'
timestamp is given in milliseconds counted from 1. Jan. 1970 00:00:00.000

Wave59 directory and fileformat:

There's one dedicated directory for each single contract, named by its contract name.
Files:

• <date>.h59
collected bar data for that day, minute by minute
date is given in YYYYMMDD

516 1.34165 1.34165 1.34165 1.34165 0
517 1.34165 1.34165 1.3416 1.3416 7
fields: <time> <open> <high> <low> <close> <volume>

• <date>.txt
collected ticks for the current day
date is given in YYYYMMDD

516 1.34165
516 1.34165
fields: <time> <price>

• <date>v.txt
collected volume ticks for the current day
 date is given in YYYYMMDD

516 456
fields: <time> <volume>



reqHistoricalData() is implemented this way:

Linking to TWS using the TWS Java API

Recommended reading:

http://www.interactivebrokers.com/download/JavaAPIGettingStarted.pdf

The most important things to remember here are that the SpreadIBFrame.java class
implements the EWrapper interface, which is the part of IB's TWS Java API that defines the methods that 
receive messages from TWS, and calls the methods in EClientSocket, which are used to send messages to 
TWS.

If you have the skill and confidence to handle Java on your own, you can build your own Java application 
to link to TWS, using the following steps as a guide.
1 Import com.ib.client.* into your source code file. This is the package that contains the
TWS Java API classes and methods.
2 Implement the EWrapper interface. This class will receive messages from the socket.
3 Override the following methods:

http://www.interactivebrokers.com/download/JavaAPIGettingStarted.pdf


4 Instantiate the EClientSocket class. This object will be used to send messages to TWS.
5 Call the following EClientSocket methods:


